An efficient machine learning-based approach for screening individuals at risk of hereditary haemochromatosis

Author:

Martins Conde Patricia,Sauter Thomas,Nguyen Thanh-Phuong

Abstract

AbstractHereditary haemochromatosis (HH) is an autosomal recessive disease, where HFE C282Y homozygosity accounts for 80–85% of clinical cases among the Caucasian population. HH is characterised by the accumulation of iron, which, if untreated, can lead to the development of liver cirrhosis and liver cancer. Since iron overload is preventable and treatable if diagnosed early, high-risk individuals can be identified through effective screening employing artificial intelligence-based approaches. However, such tools expose novel challenges associated with the handling and integration of large heterogeneous datasets. We have developed an efficient computational model to screen individuals for HH using the family study data of the Hemochromatosis and Iron Overload Screening (HEIRS) cohort. This dataset, consisting of 254 cases and 701 controls, contains variables extracted from questionnaires and laboratory blood tests. The final model was trained on an extreme gradient boosting classifier using the most relevant risk factors: HFE C282Y homozygosity, age, mean corpuscular volume, iron level, serum ferritin level, transferrin saturation, and unsaturated iron-binding capacity. Hyperparameter optimisation was carried out with multiple runs, resulting in 0.94 ± 0.02 area under the receiving operating characteristic curve (AUCROC) for tenfold stratified cross-validation, demonstrating its outperformance when compared to the iron overload screening (IRON) tool.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using artificial intelligence to improve body iron quantification: A scoping review;Blood Reviews;2023-11

2. Artificial Intelligence Applications in Hepatology;Clinical Gastroenterology and Hepatology;2023-07

3. AIM in Genomic Basis of Medicine: Applications;Artificial Intelligence in Medicine;2022

4. AIM in Genomic Basis of Medicine: Applications;Artificial Intelligence in Medicine;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3