ID-RDRL: a deep reinforcement learning-based feature selection intrusion detection model

Author:

Ren Kezhou,Zeng Yifan,Cao Zhiqin,Zhang Yingchao

Abstract

AbstractNetwork assaults pose significant security concerns to network services; hence, new technical solutions must be used to enhance the efficacy of intrusion detection systems. Existing approaches pay insufficient attention to data preparation and inadequately identify unknown network threats. This paper presents a network intrusion detection model (ID-RDRL) based on RFE feature extraction and deep reinforcement learning. ID-RDRL filters the optimum subset of features using the RFE feature selection technique, feeds them into a neural network to extract feature information and then trains a classifier using DRL to recognize network intrusions. We utilized CSE-CIC-IDS2018 as a dataset and conducted tests to evaluate the model’s performance, which is comprised of a comprehensive collection of actual network traffic. The experimental results demonstrate that the proposed ID-RDRL model can select the optimal subset of features, remove approximately 80% of redundant features, and learn the selected features through DRL to enhance the IDS performance for network attack identification. In a complicated network environment, it has promising application potential in IDS.

Funder

the 100 Top Talents Program, SYSU

National Key Laboratory

Advanced Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3