Author:
Gingichashvili Sarah,Steinberg Doron,Sionov Ronit Vogt,Feuerstein Osnat,Cohen Noa E.
Abstract
AbstractBacillus subtilis biofilms are well known for their complex and highly adaptive morphology. Indeed, their phenotypical diversity and intra-biofilm heterogeneity make this gram-positive bacterium the subject of many scientific papers on the structure of biofilms. The “robustness” of biofilms is a term often used to describe their level of susceptibility to antimicrobial agents and various mechanical and molecular inhibition/eradication methods. In this paper, we use computational analytics to quantify Bacillus subtilis morphological response to proximity to an antimicrobial source, in the form of the antiseptic chlorhexidine. Chlorhexidine droplets, placed in proximity to Bacillus subtilis macrocolonies at different distances result in morphological changes, quantified using Python-based code, which we have made publicly available. Our results quantify peripheral and inner core deformation as well as differences in cellular viability of the two regions. The results reveal that the inner core, which is often characterized by the presence of wrinkled formations in the macrocolony, is more preserved than the periphery. Furthermore, the paper describes a crescent-shaped colony morphology which occurs when the distance from the chlorhexidine source is 0.5 cm, as well as changes observed in the growth substrate of macrocolonies exposed to chlorhexidine.
Funder
STEP Graduate Training Program
Dr. Izador I. Cabakoff Research Endowment Fund
Azrieli College of Engineering Research Fund
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献