Colonization of distant organs by tumor cells generating circulating homotypic clusters adaptive to fluid shear stress

Author:

Maeshiro Manabu,Shinriki Satoru,Liu Rin,Nakachi Yutaka,Komohara Yoshihiro,Fujiwara Yukio,Ohtsubo Kazuaki,Yoshida Ryoji,Iwamoto Kazuya,Nakayama Hideki,Matsui Hirotaka

Abstract

AbstractOnce disseminated tumor cells (DTCs) arrive at a metastatic organ, they remain there, latent, and become seeds of metastasis. However, the clonal composition of DTCs in a latent state remains unclear. Here, we applied high-resolution DNA barcode tracking to a mouse model that recapitulated the metastatic dormancy of head and neck squamous cell carcinoma (HNSCC). We found that clones abundantly circulated peripheral blood dominated DTCs. Through analyses of multiple barcoded clonal lines, we identified specific subclonal population that preferentially generated homotypic circulating tumor cell (CTC) clusters and dominated DTCs. Despite no notable features under static conditions, this population significantly generated stable cell aggregates that were resistant to anoikis under fluid shear stress (FSS) conditions in an E-cadherin-dependent manner. Our data from various cancer cell lines indicated that the ability of aggregate-constituting cells to regulate cortical actin-myosin dynamics governed the aggregates’ stability in FSS. The CTC cluster-originating cells were characterized by the expression of a subset of E-cadherin binding factors enriched with actin cytoskeleton regulators. Furthermore, this expression signature was associated with locoregional and metastatic recurrence in HNSCC patients. These results reveal a biological selection of tumor cells capable of generating FSS-adaptive CTC clusters, which leads to distant colonization.

Funder

Shinnihon Foundation of Advanced Medical Treatment Research

Ministry of Education, Culture, Sports, Science and Technology of Japan

Center for Metabolic Regulation of Healthy Aging (CMHA) at Kumamoto University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3