Universal principles justify the existence of concept cells

Author:

Calvo Tapia CarlosORCID,Tyukin IvanORCID,Makarov Valeri A.ORCID

Abstract

AbstractThe widespread consensus argues that the emergence of abstract concepts in the human brain, such as a “table”, requires complex, perfectly orchestrated interaction of myriads of neurons. However, this is not what converging experimental evidence suggests. Single neurons, the so-called concept cells (CCs), may be responsible for complex tasks performed by humans. This finding, with deep implications for neuroscience and theory of neural networks, has no solid theoretical grounds so far. Our recent advances in stochastic separability of highdimensional data have provided the basis to validate the existence of CCs. Here, starting from a few first principles, we layout biophysical foundations showing that CCs are not only possible but highly likely in brain structures such as the hippocampus. Three fundamental conditions, fulfilled by the human brain, ensure high cognitive functionality of single cells: a hierarchical feedforward organization of large laminar neuronal strata, a suprathreshold number of synaptic entries to principal neurons in the strata, and a magnitude of synaptic plasticity adequate for each neuronal stratum. We illustrate the approach on a simple example of acquiring “musical memory” and show how the concept of musical notes can emerge.

Funder

Russian Science Foundation

Ministry of Economy and Competitiveness | Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A map neuron with piezoelectric membrane, energy regulation and coherence resonance;Communications in Nonlinear Science and Numerical Simulation;2024-12

2. STRDP: A simple rule of rate dependent STDP;2023 7th Scientific School Dynamics of Complex Networks and their Applications (DCNA);2023-09-18

3. Neuromorphic tuning of feature spaces to overcome the challenge of low-sample high-dimensional data;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

4. Dimensionality and Ramping: Signatures of Sentence Integration in the Dynamics of Brains and Deep Language Models;The Journal of Neuroscience;2023-05-22

5. A unified neural representation model for spatial and semantic computations;2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3