Semi-transparent graphite films growth on Ni and their double-sided polymer-free transfer

Author:

Deokar Geetanjali,Genovese Alessandro,Surya Sandeep G.,Long Chen,Salama Khaled N.,Costa Pedro M. F. J.

Abstract

AbstractNanorange thickness graphite films (NGFs) are robust nanomaterials that can be produced via catalytic chemical vapour deposition but questions remain regarding their facile transfer and how surface topography may affect their application in next-generation devices. Here, we report the growth of NGFs (with an area of 55 cm2 and thickness of ~ 100 nm) on both sides of a polycrystalline Ni foil and their polymer-free transfer (front- and back-side, in areas up to 6 cm2). Due to the catalyst foil topography, the two carbon films differed in physical properties and other characteristics such as surface roughness. We demonstrate that the coarser back-side NGF is well-suited for NO2 sensing, whereas the smoother and more electrically conductive front-side NGF (2000 S/cm, sheet resistance − 50 Ω/sq) could be a viable conducting channel or counter electrode in solar cells (as it transmits 62% of visible light). Overall, the growth and transfer processes described could help realizing NGFs as an alternative carbon material for those technological applications where graphene and micrometer-thick graphite films are not an option.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference74 articles.

1. Inagaki, M. & Kang, F. Materials Science and Engineering of Carbon: Fundamentals. Second edition ed. 2014. 542.

2. Pierson, H.O., Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications. 1st Edition ed. 1994, New Jersey.

3. Cai, W. et al. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95(12), 123115 (2009).

4. Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011).

5. Zheng, Q. Y., Braun, P. V. & Cahill, D. G. Thermal conductivity of graphite thin films grown by low temperature chemical vapor deposition on Ni (111). Adv. Mater. Interfaces 3, 16 (2016).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3