Liquid-phase ASEM imaging of cellular and structural details in cartilage and bone formed during endochondral ossification: Keap1-deficient osteomalacia

Author:

Sakai Eiko,Sato Mari,Memtily Nassirhadjy,Tsukuba Takayuki,Sato Chikara

Abstract

AbstractChondrogenesis and angiogenesis drive endochondral ossification. Using the atmospheric scanning electron microscopy (ASEM) without decalcification and dehydration, we directly imaged angiogenesis-driven ossification at different developmental stages shortly after aldehyde fixation, using aqueous radical scavenger glucose solution to preserve water-rich structures. An embryonic day 15.5 mouse femur was fixed and stained with phosphotungstic acid (PTA), and blood vessel penetration into the hypertrophic chondrocyte zone was visualised. We observed a novel envelope between the perichondrium and proliferating chondrocytes, which was lined with spindle-shaped cells that could be borderline chondrocytes. At postnatal day (P)1, trabecular and cortical bone mineralisation was imaged without staining. Additional PTA staining visualised surrounding soft tissues; filamentous connections between osteoblast-like cells and osteocytes in cortical bone were interpreted as the osteocytic lacunar-canalicular system. By P10, resorption pits had formed on the tibial trabecular bone surface. The applicability of ASEM for pathological analysis was addressed using knockout mice of Keap1, an oxidative-stress sensor. In Keap1−/− femurs, we observed impaired calcification and angiogenesis of epiphyseal cartilage, suggesting impaired bone development. Overall, the quick ASEM method we developed revealed mineralisation and new structures in wet bone tissue at EM resolution and can be used to study mineralisation-associated phenomena of any hydrated tissue.

Funder

Japan Society for the Promotion of Science KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Social Motility Assays of Flavobacterium johnsoniae;Methods in Molecular Biology;2023

2. Nanoscale Imaging and Analysis of Bone Pathologies;Applied Sciences;2021-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3