Interaction of human CRX and NRL in live HEK293T cells measured using fluorescence resonance energy transfer (FRET)

Author:

Zhuo Xinming,Knox Barry E.

Abstract

AbstractCRX and NRL are retina-specific transcription factors that control rod photoreceptor differentiation and synergistically activate rod phototransduction gene expression. Previous experiments showed they interact in vitro and in yeast two-hybrid assays. Here, we examined CRX-NRL interaction in live HEK293T cells using two fluorescence resonance energy transfer (FRET) approaches: confocal microscopy and flow cytometry (FC-FRET). FC-FRET can provide measurements from many cells having wide donor–acceptor expression ranges. FRET efficiencies were calibrated with a series of donor (EGFP)-acceptor (mCherry) fusion proteins separated with linkers between 6–45 amino acids. CRX and NRL were fused at either terminus with EGFP or mCherry to create fluorescent proteins, and all combinations were tested in transiently transfected cells. FRET signals between CRX or NRL homo-pairs were highest with both fluorophores fused to the DNA binding domains (DBD), lower with both fused to the activation domains (AD), and not significant when fused on opposite termini. NRL had stronger FRET signals than CRX. A significant FRET signal between CRX and NRL hetero-pairs was detected when donor was fused to the CRX DNA binding domain and the acceptor fused to the NRL activation domain. FRET signals increased with CRX or NRL expression levels at a rate much higher than expected for collisional FRET alone. Together, our results show the formation of CRX-NRL complexes in live HEK293T cells that are close enough for FRET.

Funder

National Institutes of Health

Research to Prevent Blindness

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3