Sensitive and rapid detection of Babesia species in dogs by recombinase polymerase amplification with lateral flow dipstick (RPA-LFD)

Author:

Onchan Warunya,Ritbamrung Onchira,Changtor Phanupong,Pradit Waranee,Chomdej Siriwadee,Nganvongpanit Korakot,Siengdee Puntita,Suyasunanont Urasri,Buddhachat Kittisak

Abstract

AbstractCanine babesiosis is a tick-borne disease caused by Babesia spp., which infects and destroys healthy erythrocytes, leading to mortality and morbidity in dogs. The diagnosis of babesiosis is tedious and time-consuming, especially in latent and chronic infections. Here, a recombinase polymerase amplification combined with a lateral flow dipstick (RPA-LFD) assay was developed for rapid and accurate detection of Babesia spp. in canine blood specimens based on the 18S rRNA region. The RPA-LFD assay using rpaBab264 gave specificity to Babesia spp. in dogs (B. vogeli and B. gibsoni) without cross-amplification to other parasites (apicomplexans and non-apicomplexans), with detection limit of at least 22.5 copies/μl (0.1 fg/µl) at 40 °C for at least 10 min. The whole process of DNA amplification by RPA and readout by LFD did not exceed 30 min. To determine the performance of the RPA-LFD assay, a total of 30 clinical samples was examined and compared with conventional PCR (cPCR) and multiplex HRM (mHRM). Eight dogs (26.67%) were detected as positive by RPA-LFD, while seven and six were found positive by cPCR and mHRM, respectively. RPA-LFD and cPCR showed high agreement with Babesia spp. detection with kappa > 0.9. We confirmed that the dogs were infected by B. vogeli from sequences of positive PCR results. Our findings suggested that RPA-LFD using the rpaBab264 assay offered a rapid, accurate, cost-effective and simple method for Babesia spp. detection that is feasibly applicable to be rapid kit at a pet hospital or point-of-care testing.

Funder

the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand Science Research and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3