iSS-PC: Identifying Splicing Sites via Physical-Chemical Properties Using Deep Sparse Auto-Encoder
Author:
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Link
http://www.nature.com/articles/s41598-017-08523-8.pdf
Reference68 articles.
1. Brunak, S., Engelbrecht, J. & Knudsen, S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. Journal of Molecular Biology 220, 49–65 (1991).
2. Hebsgaard, S. M., Korning, P. G., Tolstrup, N., Engelbrecht, J. & Rouz, P. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Research 24, 3439–3452 (1996).
3. Brendel, V. & Kleffe, J. Prediction of locally optimal splice sites in plant pre-mRNA with applications to gene identification in Arabidopsis thaliana genomic DNA. Nucleic Acids Research 26, 4748–4757 (1998).
4. Pertea, M., Lin, X. & Salzberg, S. L. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Research 29, 1185–1190 (2001).
5. Dogan, R. I., Getoor, L., Wilbur, W. J. & Mount, S. M. SplicePort–an interactive splice-site analysis tool. Nucleic Acids Research 35, W285–291 (2007).
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An effective deep learning-based approach for splice site identification in gene expression;Science Progress;2024-07
2. Predicting N6-Methyladenosine Sites in Multiple Tissues of Mammals through Ensemble Deep Learning;International Journal of Molecular Sciences;2022-12-07
3. A brief review of machine learning methods for RNA methylation sites prediction;Methods;2022-07
4. Roles of Physicochemical and Structural Properties of RNA-Binding Proteins in Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning;International Journal of Molecular Sciences;2022-04-17
5. Identification of D Modification Sites Using a Random Forest Model Based on Nucleotide Chemical Properties;International Journal of Molecular Sciences;2022-03-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3