Abstract
AbstractGovernments continue to update social intervention strategies to contain COVID-19 infections. However, investigation of COVID-19 severity indicators across the population might help to design more precise strategies, balancing the need to keep people safe and to reduce the socio-economic burden of generalized restriction precedures. Here, we propose a method for age-sex population-adjusted analysis of disease severity in epidemics that has the advantage to use simple and repeatable variables, which are daily or weekly available. This allows to monitor the effect of public health policies in short term, and to repeat these calculations over time to surveille epidemic dynamics and impact. Our method can help to define a risk-categorization of likeliness to develop a severe COVID-19 disease which requires intensive care or is indicative of a higher risk of dying. Indeed, analysis of suitable open-access COVID-19 data in three European countries indicates that individuals in the 0–40 age interval and females under 60 are significantly less likely to develop a severe condition and die, whereas males equal or above 60 are more likely at risk of severe disease and death. Hence, a combination of age-adaptive and sex-balanced guidelines for social interventions could represent key public health management tools for policymakers.
Funder
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献