Robust AUC optimization under the supervision of clean data

Author:

Zhang Chenkang,Tian Haobing,Zhang Lang,Jiao Pengju

Abstract

AbstractAUC (area under the ROC curve) is an essential metric that has been extensively researched in the field of machine learning. Traditional AUC optimization methods need a large-scale clean dataset, while real-world datasets usually contain massive noisy samples. To reduce the impact of noisy samples, many robust AUC optimization methods have been proposed. However, these methods only use noisy data and ignore the effect of clean data. To make full use of clean data and noisy data, in this paper, we propose a new framework for AUC optimization which uses clean samples to guide the processing of the noisy dataset based on the technology of self-paced learning (SPL). Innovatively, we introduce the consistency regularization term to reduce the negative impact of the data enhancement technology on SPL. Traditional SPL methods usually suffer from the high complexity of alternately solving the two critical sub-problems with respect to sample weights and model parameters. To speed up the training process, we propose a new efficient algorithm to solve our problem, which alternately updates sample weights and model parameters with the stochastic gradient method. Theoretically, we prove that our new optimization method can converge to a stationary point. Comprehensive experiments demonstrate that our robust AUC optimization (RAUCO) algorithm holds better robustness than existing algorithms.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3