Abstract
AbstractWood ash generated as a by-product of biomass combustion can be a sustainable and reasonable approach to counteract acidification and correct nutrient deficiency in forest soils. We investigated the influence of wood ash (WA) and combined WA + N (nitrogen) on soil chemical properties, growth and foliar nutrients of Zelkova serrata and their potential as a soil amender across different soil types. We applied four levels of WA (0, 5, 10, and 20 Mg ha−1) and two levels of N fertilizer (0 and 150 kg ha−1) across three different soil types: landfill saline (LS) soil, forest infertile (FI) soil, and forest acidic (FA) soil. The WA generally improved soil pH, organic matter, available P, exchangeable cations (K+, Na+, Ca2+, and Mg2+), and EC of the three soils, but its ameliorating and neutralizing effects were predominant in FA soil. N fertilizer was more effective in improving plant growth, especially for biomass production in LS and FI soils. WA application significantly increased biomass production when it was applied over 5 Mg ha−1 in FA soil, but higher dose rate of WA (i.e. 20 Mg ha−1) seems to pose negative effects. Foliar P, K, and Ca concentrations also tended to increase with the increasing amount of WA. Therefore, lower dosage of WA without N can be applied as a soil amender to counteract forest soil acidity and improve plant growth and foliar nutrient concentration, whereas N fertilizer without WA can be added to correct nutrient soil deficiencies in landfill and infertile soils. This study should enhance our understanding of WA as a sustainable and reasonable approach to counteract acidification and correct nutrient deficiency in forest soils.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Müller, A. et al. The Role of Biomass in the Sustainable Development Goals: A Reality Check and Governance Implications. (Institue for Advances Sustainability Studies, 2015).
2. Keesstra, S. et al. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 7, 133 (2018).
3. Li, X., Rubæk, G. H. & Sørensen, P. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes. Sci. Total Environ. 557–558, 851–860 (2016).
4. Hannam, K. D., Deschamps, C., Kwiaton, M., Venier, L. & Hazlett, P. W. Regulations and Guidelines for the Use of Wood Ash as a Soil Amendment in Canadian Forests (Natural Resources Canada Canadian Forest Service, 2016).
5. Nieminen, M., Laiho, R., Sarkkola, S. & Penttilä, T. Whole-tree, stem-only, and stump harvesting impacts on site nutrient capital of a Norway spruce-dominated peatland forest. Eur. J. For. Res. 135, 531–538 (2016).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献