Janzen-Connell effects shape gene flow patterns and realized fitness in the tropical dioecious tree Spondias purpurea (ANACARDIACEAE)

Author:

Cristóbal-Pérez E. Jacob,Fuchs Eric J.,Olivares-Pinto Ulises,Quesada Mauricio

Abstract

AbstractPollination and seed dispersal patterns determine gene flow within plant populations. In tropical forests, a high proportion of trees are dioecious, insect pollinated and dispersed by vertebrates. Dispersal vectors and density dependent factors may modulate realized gene flow and influence the magnitude of Fine Scale Genetic Structure (FSGS), affecting individual fitness. Spondias purpurea is a vertebrate-dispersed, insect-pollinated dioecious tropical tree. We assessed the influence of sex ratio, effective and realized gene flow on genetic diversity, FSGS and individual fitness within a 30 ha plot in the tropical dry forest reserve of Chamela-Cuixmala, Mexico. All individuals within the plot were tagged, geo-referenced and sampled for genetic analysis. We measured dbh and monitored sex expression during two reproductive seasons for all individuals. We collected seeds directly from maternal trees for effective pollen dispersal analysis, and analyzed established seedlings to assess realized pollen and seed dispersal. Nine microsatellite loci were used to describe genetic diversity parameters, FSGS and gene flow patterns among different size classes. A total of 354 individuals were located and classified into three size classes based on their dbh (<10, 10–20, and >20 cm). Population sex ratios were male biased and diametric size distributions differed among sexes, these differences may be the result of precocious male reproduction at early stages. Autocorrelation analyses indicate low FSGS (Fj <0.07) across all size classes. Long realized pollen and seed dispersal and differences among effective and realized gene flow were detected. In our study site low FSGS is associated with high gene flow levels. Effective and realized gene flow indicate a population recruitment curve indicating Janzen-Connell effects and suggesting fitness advantages for long-distance pollen and seed dispersal events.

Funder

Consejo Nacional de Ciencia y Tecnología

CYTED Ciencia y Tecnología para el Desarrollo

Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica UNAM

Programa de Apoyos a Proyectos de Investigación e Innovación Tecnológica UNAM

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3