Synthesis of palladium nanoparticles stabilized on Schiff base-modified ZnO particles as a nanoscale catalyst for the phosphine-free Heck coupling reaction and 4-nitrophenol reduction

Author:

Baran Nuray Yılmaz,Baran Talat,Nasrollahzadeh Mahmoud

Abstract

AbstractRecently, the development of heterogeneous nanocatalytic systems using solid supports has been gaining importance due to some advantages such as easy handling, high thermal stability, high efficiency, reusability, and so on. Therefore, the design of catalyst supports for the preparation of stable heterogeneous catalytic systems is of great importance. In this work, Schiff base-modified ZnO particles have been developed (ZnO–Scb) as a novel support. A heterogeneous nanocatalyst system has then been prepared by immobilizing palladium nanoparticles (Pd NPs) on the ZnO-Scb surface as the support. The resulting palladium nanocatalyst (Pd–ZnO–Scb) structure has been characterized by different analytical techniques (FT-IR, XRD, TEM, FE-SEM, elemental mapping and EDS) and used to catalyze the Heck coupling reactions and 4-nitrophenol (4-NP) reduction. Test results revealed that Pd–ZnO–Scb could effectively couple various aryl halides with styrene in yields of up to 98% in short reaction times. Pd–ZnO–Scb was also efficiently used in the complete 4-NP reduction within 135 s at room temperature. Additionally, it was found that Pd–ZnO–Scb was more effective than other reported catalysts in the Heck coupling reaction. Moreover, the recycling tests indicated that Pd–ZnO–Scb could be easily isolated from the reaction medium and reused in seven consecutive catalytic runs while retaining its nanostructure.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3