Cytoskeletal disorganization underlies PABPN1-mediated myogenic disability
-
Published:2020-10-19
Issue:1
Volume:10
Page:
-
ISSN:2045-2322
-
Container-title:Scientific Reports
-
language:en
-
Short-container-title:Sci Rep
Author:
Olie Cyriel Sebastiaan,van der Wal Erik,Cikes Domagoj,Maton Loes,de Greef Jessica C.,Lin I.-Hsuan,Chen Yi-Fan,Kareem Elsayad,Penninger Josef M.,Kessler Benedikt M.,Raz Vered
Abstract
AbstractMuscle wasting and atrophy are regulated by multiple molecular processes, including mRNA processing. Reduced levels of the polyadenylation binding protein nucleus 1 (PABPN1), a multifactorial regulator of mRNA processing, cause muscle atrophy. A proteomic study in muscles with reduced PABPN1 levels suggested dysregulation of sarcomeric and cytoskeletal proteins. Here we investigated the hypothesis that reduced PABPN1 levels lead to an aberrant organization of the cytoskeleton. MURC, a plasma membrane-associated protein, was found to be more abundant in muscles with reduced PABPN1 levels, and it was found to be expressed at regions showing regeneration. A polarized cytoskeletal organization is typical for muscle cells, but muscle cells with reduced PABPN1 levels (named as shPAB) were characterized by a disorganized cytoskeleton that lacked polarization. Moreover, cell mechanical features and myogenic differentiation were significantly reduced in shPAB cells. Importantly, restoring cytoskeletal stability, by actin overexpression, was beneficial for myogenesis, expression of sarcomeric proteins and proper localization of MURC in shPAB cell cultures and in shPAB muscle bundle. We suggest that poor cytoskeletal mechanical features are caused by altered expression levels of cytoskeletal proteins and contribute to muscle wasting and atrophy.
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference55 articles.
1. Schiaffino, S., Dyar, K. A., Ciciliot, S., Blaauw, B. & Sandri, M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280, 4294–4314 (2013). 2. Anisimova, A. S., Alexandrov, A. I., Makarova, N. E., Gladyshev, V. N. & Dmitriev, S. E. Protein synthesis and quality control in aging. Aging 10, 4269–4288 (2018). 3. Ohlendieck, K. Proteomic profiling of fast-to-slow muscle transitions during aging. Front. Physiol. 2, 105 (2011). 4. Ubaida-Mohien, C., Lyashkov, A., Gonzalez-Freire, M., Tharakan, R., Shardell, M., Moaddel, R., Semba, R. D., Chia, C. W., Gorospe, M., Sen, R. & Ferrucci, L. Aging skeletal muscle proteomics finds changes in spliceosome, immune factors, proteostasis and mitochondria. bioRxiv, p. 700468 (2019) 5. Olie, C. S. et al. Deacetylation inhibition reverses PABPN1-dependent muscle wasting. iScience 12, 318–332 (2019).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|