Author:
Bellantuono Loredana,Tommasi Raffaele,Pantaleo Ester,Verri Martina,Amoroso Nicola,Crucitti Pierfilippo,Di Gioacchino Michael,Longo Filippo,Monaco Alfonso,Naciu Anda Mihaela,Palermo Andrea,Taffon Chiara,Tangaro Sabina,Crescenzi Anna,Sodo Armida,Bellotti Roberto
Abstract
AbstractRaman spectroscopy shows great potential as a diagnostic tool for thyroid cancer due to its ability to detect biochemical changes during cancer development. This technique is particularly valuable because it is non-invasive and label/dye-free. Compared to molecular tests, Raman spectroscopy analyses can more effectively discriminate malignant features, thus reducing unnecessary surgeries. However, one major hurdle to using Raman spectroscopy as a diagnostic tool is the identification of significant patterns and peaks. In this study, we propose a Machine Learning procedure to discriminate healthy/benign versus malignant nodules that produces interpretable results. We collect Raman spectra obtained from histological samples, select a set of peaks with a data-driven and label independent approach and train the algorithms with the relative prominence of the peaks in the selected set. The performance of the considered models, quantified by area under the Receiver Operating Characteristic curve, exceeds 0.9. To enhance the interpretability of the results, we employ eXplainable Artificial Intelligence and compute the contribution of each feature to the prediction of each sample.
Funder
Ministero della Salute (Italy), TIRAMA project
Publisher
Springer Science and Business Media LLC
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献