Author:
Edalati Kaveh,Taniguchi Ikuo,Floriano Ricardo,Luchessi Augusto Ducati
Abstract
AbstractImpacts by small solar system bodies (meteoroids, asteroids, comets and transitional objects) are characterized by a combination of energy dynamics and chemical modification on both terrestrial and small solar system bodies. In this context, the discovery of glycine amino acid in meteorites and comets has led to a hypothesis that impacts by astronomical bodies could contribute to delivery and polymerization of amino acids in the early Earth to generate proteins as essential molecules for life. Besides the possibility of abiotic polymerization of glycine, its decomposition by impacts could generate reactive groups to form other essential organic biomolecules. In this study, the high-pressure torsion (HPT) method, as a new platform for simulation of impacts by small solar system bodies, was applied to glycine. In comparison with high-pressure shock experiments, the HPT method simultaneously introduces high pressure and deformation strain. It was found that glycine was not polymerized in the experimental condition assayed, but partially decomposed to ethanol under pressures of 1 and 6 GPa and shear strains of < 120 m/m. The detection of ethanol implies the inherent availability of remaining nitrogen-containing groups, which can incorporate to the formation of other organic molecules at the impact site. In addition, this finding highlights a possibility of the origin of ethanol previously detected in comets.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献