Modeling electrochemical properties of LiMn$$_{1-x}$$Co$$_{x}$$BO$$_3$$ for cathode materials in lithium-ion rechargeable batteries

Author:

Nhapulo Sérgio Leonardo,de Almeida Jailton Souza

Abstract

AbstractIn this work, we report first-principle calculations of the electrochemical properties of lithitated and delithiated LiMn$$_{1-x}$$ 1 - x Co$$_{x}$$ x BO$$_3$$ 3 ($$x = 0$$ x = 0 , 0.25, 0.5, 0.75, 1) crystals based on the density functional theory (DFT) with the generalized gradient approximation (GGA) and also considering the on-site Coulomb interaction, the so-called Hubbard correction. We found that the top of the valence band and the bottom of the conduction band of these crystals are mainly formed by the hybridization of the 3d orbitals of mixed Mn$$_{1-x}$$ 1 - x Co$$_{x}$$ x ions and oxygen 2p orbitals. We observed a band gap narrowing with an increase of cobalt concentration and that the Hubbard correction implies a better theoretical description of their electronic structures. When considering the delithiated materials, our calculations show a metallic behavior for intermediate cobalt concentrations ($$x = 0.25$$ x = 0.25 , 0.5, 0.75), which is a good quality for cathodic materials, as it improves the battery discharge process. We also obtained high (4.14 V vs. Li$$^+$$ + /Li$$^0$$ 0 and 4.16 V vs. Li$$^+$$ + /Li$$^0$$ 0 ) open circuit voltage (OCV) values at cobalt concentrations of $$x = 0.5$$ x = 0.5 and 0.75, where we believe that if these high OCV values are accompanied by a high charge storage capacity, these compounds can become promising and useful cathode materials. Finally, our results are in accordance with previous calculations and also with experimental results.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3