Author:
Skvortsov Mikhail I.,Wolf Alexey A.,Vlasov Alexander A.,Proskurina Kseniya V.,Dostovalov Alexander V.,Egorova Olga N.,Galagan Boris I.,Sverchkov Sergey E.,Denker Boris I.,Semjonov Sergey L.,Babin Sergey A.
Abstract
AbstractSpecially designed composite heavily Er3+-doped fiber in combination with unique point-by-point inscription technology by femtosecond pulses at 1,026 nm enables formation of distributed-feedback (DFB) laser with ultra-short cavity length of 5.3 mm whose parameters are comparable and even better than those for conventional Er3+-doped fiber DFB lasers having much longer cavity. The composite fiber was fabricated by melting rare-earth doped phosphate glass in silica tube. The ultra-short DFB laser generates single-polarization single-frequency radiation at 1,550 nm with narrow linewidth (3.5 kHz) and 0.5 mW output power at 600 mW 980-nm pumping. The same fiber with conventional CW UV (244 nm) inscription technology using phase mask enables fabrication of 40-mm long DFB laser with > 18 mW output power at 3.3% pump conversion, which is a record efficiency for Er3+-doped fiber DFB lasers. The developed technologies form an advanced platform for Er3+-doped fiber DFB lasers operating around 1.55 µm with excellent output characteristics and unique practical features, in particular, the ultra-short DFB lasers are attractive for sensing applications.
Funder
State budget of the Russian Federation
Russian Foundation for Basic Research
Publisher
Springer Science and Business Media LLC
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献