Validation of a hybrid approach to standardize immunophenotyping analysis in large population studies: The Health and Retirement Study

Author:

Hunter-Schlichting DeVon,Lane JohnORCID,Cole Benjamin,Flaten Zachary,Barcelo Helene,Ramasubramanian RamyaORCID,Cassidy Erin,Faul Jessica,Crimmins Eileen,Pankratz NathanORCID,Thyagarajan BharatORCID

Abstract

AbstractTraditional manual gating strategies are often time-intensive, place a high burden on the analyzer, and are susceptible to bias between analyzers. Several automated gating methods have shown to exceed performance of manual gating for a limited number of cell subsets. However, many of the automated algorithms still require significant manual interventions or have yet to demonstrate their utility in large datasets. Therefore, we developed an approach that utilizes a previously published automated algorithm (OpenCyto framework) with a manually created hierarchically cell gating template implemented, along with a custom developed visualization software (FlowAnnotator) to rapidly and efficiently analyze immunophenotyping data in large population studies. This approach allows pre-defining populations that can be analyzed solely by automated analysis and incorporating manual refinement for smaller downstream populations. We validated this method with traditional manual gating strategies for 24 subsets of T cells, B cells, NK cells, monocytes and dendritic cells in 931 participants from the Health and Retirement Study (HRS). Our results show a high degree of correlation (r ≥ 0.80) for 18 (78%) of the 24 cell subsets. For the remaining subsets, the correlation was low (<0.80) primarily because of the low numbers of events recorded in these subsets. The mean difference in the absolute counts between the hybrid method and manual gating strategy of these cell subsets showed results that were very similar to the traditional manual gating method. We describe a practical method for standardization of immunophenotyping methods in large scale population studies that provides a rapid, accurate and reproducible alternative to labor intensive manual gating strategies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3