Author:
Nour Islam,Hanif Atif,Alanazi Ibrahim O.,Al-Ashkar Ibrahim,Alhetheel Abdulkarim,Eifan Saleh
Abstract
AbstractThe routine evaluation of water environments is necessary to manage enteric virus-mediated fecal contamination and the possible emergence of novel variants. Here, we detected human rotavirus A (HRVA) circulating in two wastewater treatment plants, two lakes, irrigation water and a wastewater landfill located in Riyadh. VP7-derived surface protein sequences were assessed by phylogenetic analyses and inspection of thermotolerance-mediated secondary structure and seasonal variation. HRVA was most prevalent at An-Nazim wastewater landfill (AN-WWLF; 63.89%). Phylogenetic analyzes revealed the predominance of HRVA G2 lineage for the first time in Saudi Arabia. Moreover, a single HRVA sequence (2B64I-ANLF3/2018) was recovered at 45 °C from AN-WWLF; secondary structure prediction indicated that this sequence was thermotolerant with a high hydrophobicity, an absence of Ramachandran outliers, and a higher content of proline patches on the protein surface. Varied relationships were significantly observed between sampling areas influenced by temperature ranges (p < 0.05). HRVA prevalence was influenced by seasonal variations, favoring moderate temperatures in late autumn and early winter in all locations. However, a significant temperature impact was detected in Wadi-Hanifah Lake (p = 0.01). Our study extends the knowledge of currently circulating HRVA genotypes, and indicates the probable emergence of thermotolerant strains and seasonally mediated HRVA prevalence.
Funder
Deanship of Scientific research, King Saud University
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献