Modelling of hydrogen sulfide fate and emissions in extended aeration sewage treatment plant using TOXCHEM simulations

Author:

Zwain Haider M.,Nile Basim K.,Faris Ahmed M.,Vakili Mohammadtaghi,Dahlan Irvan

Abstract

AbstractOdors due to the emission of hydrogen sulfide (H2S) have been a concern in the sewage treatment plants over the last decades. H2S fate and emissions from extended aeration activated sludge (EAAS) system in Muharram Aisha-sewage treatment plant (MA-STP) were studied using TOXCHEM model. Sensitivity analysis at different aeration flowrate, H2S loading rate, wastewater pH, wastewater temperature and wind speed were studied. The predicted data were validated against actual results, where all the data were validated within the limits, and the statistical evaluation of normalized mean square error (NMSE), geometric variance (VG), and correlation coefficient (R) were close to the ideal fit. The results showed that the major processes occurring in the system were degradation and emission. During summer (27 °C) and winter (12 °C), about 25 and 23%, 1 and 2%, 2 and 2%, and 72 and 73% were fated as emitted to air, discharged with effluent, sorbed to sludge, and biodegraded, respectively. At summer and winter, the total emitted concentrations of H2S were 6.403 and 5.614 ppm, respectively. The sensitivity results indicated that aeration flowrate, H2S loading rate and wastewater pH highly influenced the emission and degradation of H2S processes compared to wastewater temperature and wind speed. To conclude, TOXCHEM model successfully predicted the H2S fate and emissions in EAAS system.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3