Study of the fatigue delamination behaviour of adhesive joints in carbon fibre reinforced epoxy composites, influence of the period of exposure to saline environment

Author:

Argüelles A.,Viña I.,Vigón P.,Lozano M.,Viña J.

Abstract

AbstractThis work analyses the fatigue delamination and fracture stress behaviour under mode I of adhesive joints made on an epoxy matrix composite material with unidirectional carbon fibre reinforcement and a commercial epoxy-based adhesive. DCB type tests (for mode I) were used with the aim to quantify the influence of the period of exposure to a degradation process in a salt spray chamber, to which the tested samples were subjected, on their fatigue behaviour. For this purpose and after a previous static characterisation of the material in which the critical values of the energy release rate for different exposure periods were determined, the levels of the energy release rate to be applied in the fatigue tests and the exposure periods to be considered (no exposure, exposure during one week and twelve weeks) and a ratio of fatigue stress levels of R = Gmin/Gmax = 0.1 were defined. From this experimental data, the G-N fatigue initiation curves and the G-da/dN growth curves were obtained. The experimental data obtained, in the fatigue initiation phase of the delamination process, have been treated by means of a probabilistic model based on a Weibull distribution, the application of models of these characteristics has allowed a better interpretation of the experimental results obtained. The most relevant result of the work is that, in general, the fatigue limits obtained for the adhesive joint, under mode I fracture, when subjected to a degradation process in a saline environment, do not translate into a relevant loss of its resistance capacity against this fatigue delamination phenomenon, in its initiation phase. On the other hand, the crack growth rates of the material subjected to different periods of exposure to a saline environment are similar and higher than those obtained for the material without exposure.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3