Proof of biased behavior of Normalized Mutual Information

Author:

Mahmoudi Amin,Jemielniak Dariusz

Abstract

AbstractThe Normalized Mutual Information (NMI) metric is widely utilized in the evaluation of clustering and community detection algorithms. This study explores the performance of NMI, specifically examining its performance in relation to the quantity of communities, and uncovers a significant drawback associated with the metric's behavior as the number of communities increases. Our findings reveal a pronounced bias in the NMI as the number of communities escalates. While previous studies have noted this biased behavior, they have not provided a formal proof and have not addressed the causation of this problem, leaving a gap in the existing literature. In this study, we fill this gap by employing a mathematical approach to formally demonstrate why NMI exhibits biased behavior, thereby establishing its unsuitability as a metric for evaluating clustering and community detection algorithms. Crucially, our study exposes the vulnerability of entropy-based metrics that employ logarithmic functions to similar bias.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3