Author:
Strimaitis Jacob,Danquah Samuel A.,Denize Clifford,Pradhan Sangram K.,Bahoura Messaoud
Abstract
AbstractThe drawbacks of common anodes in lithium-ion batteries (LIBs) and hybrid supercapacitors (HSCs), such as the high voltage plateau of Li4Ti5O12 (1.55 V vs. Li/Li+) and the moderate capacity of graphite (372 mAh-g-1), have established a need for better materials. Conversion materials, and in particular iron oxide and CaFe2O4 (CFO), have amassed recent attention as potential anode replacements. In this study, we evaluate the material and electrochemical effects of the solution combustion synthesis (SCS) of porous CFO across novel fuel-to-oxidizer ratios and calcination temperatures. We demonstrate that nearly doubling the amount of fuel used during synthesis increases capacities between 120 and 150% at high current densities (~ 1000 mA-g-1) and across 500 additional charging-discharging cycles, an effect brought on in part by enhanced compositional purity in these samples. However, in order to ensure long-term cyclic stability, it is necessary to also calcine porous CFO to 900 °C to enhance crystallite size, particle size and spacing, and compositional purity.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献