Multi-step real-time prediction of hard-rock TBM penetration rate combining temporal convolutional network and squeeze-and-excitation block

Author:

Li Long,Liu ZaoBao,Fang Xingli,Qi Wenbiao

Abstract

AbstractAccurate penetration rate prediction enhances rock-breaking efficiency and reduces disc cutter damage in tunnel boring machine (TBM) construction. However, this process faces significant challenges such as the high uncertainty of ground conditions and the complexity of maintaining optimal TBM operation in long and large tunnels. To address these challenges, we propose TCN-SENet++, a novel hybrid multistep real-time penetration rate prediction model that combines a temporal convolutional network (TCN) and a squeeze-and-excitation (SENet) block for aided tunneling. This study aims to demonstrate the application of TCN-SENet++, as well as other models such as RNN, LSTM, GRU, and TCN, for TBM penetration rate prediction. The model was developed using actual datasets collected from the Yin-Song diversion project. We employ a 30-s time step to predict the future time steps of the penetration rate (1st, 3rd, 5th, 7th, and 9th). The features that influence the penetration rate, such as the cutterhead torque, thrust, and cutterhead power, were considered. A comparative analysis using the mean absolute error and mean squared error revealed that the TCN-SENet++ model outperformed the other models, including RNN, LSTM, GRU, TCN, and TCN-SENet+. In comparison, TCN-SENet++ achieved average MSE reductions of 18%, 6%, 3%, 1%, and 2%, respectively. The TCN-SENet++ model demonstrated fewer errors in the new project, validating its effectiveness and suitability for real-time penetration rate prediction in TBM construction.

Funder

Doctoral Initiation Fund of Shandong Technology and Business University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3