A synthetic retinoic acid receptor agonist Am80 ameliorates renal fibrosis via inducing the production of alpha-1-acid glycoprotein

Author:

Watanabe Hiroshi,Bi Jing,Murata Ryota,Fujimura Rui,Nishida Kento,Imafuku Tadashi,Nakamura Yuka,Maeda Hitoshi,Mukunoki Ayumi,Takeo Toru,Nakagata Naomi,Kurauchi Yuki,Katsuki Hiroshi,Tanaka Motoko,Matsushita Kazutaka,Fukagawa Masafumi,Maruyama Toru

Abstract

AbstractRenal fibrosis is a major factor in the progression of chronic kidney disease and the final common pathway of kidney injury. Therefore, the effective therapies against renal fibrosis are urgently needed. The objective of this study was to investigate the effect of Am80, a synthetic retinoic acid receptor (RAR) agonist, in the treatment of renal interstitial fibrosis using unilateral ureteral obstruction (UUO) mice. The findings indicate that Am80 treatment suppressed renal fibrosis and inflammation to the same degree as the naturally-occuring retinoic acid, all-trans retinoic acid (atRA). But the adverse effect of body weight loss in Am80-treated mice was lower compared to the atRA treatment. The hepatic mRNA levels of alpha-1-acid glycoprotein (AGP), a downstream molecule of RAR agonist, was increased following administration of Am80 to healthy mice. In addition, increased AGP mRNA expression was also observed in HepG2 cells and THP-1-derived macrophages that had been treated with Am80. AGP-knockout mice exacerbated renal fibrosis, inflammation and macrophage infiltration in UUO mice, indicating endogenous AGP played an anti-fibrotic and anti-inflammatory role during the development of renal fibrosis. We also found that no anti-fibrotic effect of Am80 was observed in UUO-treated AGP-knockout mice whereas atRA treatment tended to show a partial anti-fibrotic effect. These collective findings suggest that Am80 protects against renal fibrosis via being involved in AGP function.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3