Differential recruitment of brain circuits during fear extinction in non-stressed compared to stress resilient animals

Author:

Pearson-Leary Jiah,Abramenko Alexander P.,Estela-Pro Valerie,Feindt-Scott Elizabeth,Yan Jason,Vigderman Abigail,Luz Sandra,Bangasser Debra,Ross Richard,Kubin Leszek,Bhatnagar Seema

Abstract

AbstractDysfunctional fear responses in post-traumatic stress disorder (PTSD) may be partly explained by an inability to effectively extinguish fear responses elicited by trauma-related cues. However, only a subset of individuals exposed to traumatic stress develop PTSD. Therefore, studying fear extinction deficits in animal models of individual differences could help identify neural substrates underlying vulnerability or resilience to the effects of stress. We used a rat model of social defeat in which rats segregate into passively and actively coping rats. In previous work, we showed that passively coping rats exhibit disruptions in social interaction whereas actively coping rats do not display behaviors differently from controls, indicating their resilience. Here, adult male rats exposed to 7 days of social defeat were tested for fear extinction, retention of extinction, and persistence of retention using contextual fear and ethologically-relevant fear tests. Passively coping rats exhibited elevated freezing in response to the previously extinguished context. Analyses of cFos expressing cells across select brain regions showed high correlations within dorsal hippocampal subregions, while passively coping rats had high correlations between the dorsal hippocampus CA1 and the central and basolateral subregions of the amygdala. Importantly, although control and actively coping rats showed similar levels of behavioral extinction, there was little similarity between activated structures, suggesting stress resilience in response to chronic social defeat involves an adaptive differential recruitment of brain circuits to successfully extinguish fear memories.

Funder

NIMH

Cohen Veterans Bioscience

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3