Technical, economic, and environmental feasibility of rice hull ash from electricity generation as a mineral additive to concrete

Author:

Ro Jin WookORCID,Cunningham Patrick R.,Miller Sabbie A.ORCID,Kendall Alissa,Harvey John

Abstract

AbstractA circular economy based on symbiotic relationships among sectors, where the waste from one is resource to another, holds promise for cost-effective and sustainable production. This research explores such a model for the agriculture, energy, and construction sectors in California. Here, we develop new an understanding for the synergistic utilization mechanisms for rice hull, a byproduct from rice production, as a feedstock for electricity generation and rice hull ash (RHA) used as a supplementary cementitious material in concrete. A suite of methods including experimental analysis, techno-economic analysis (TEA), and life-cycle assessment (LCA) were applied to estimate the cost and environmental performance of the system. TEA results showed that the electricity price required for break even on expenses without selling RHA is $0.07/kWh, lower than the market price. As such, RHA may be available at little to no cost to concrete producers. Our experimental results showed the viability of RHA to be used as a supplementary cementitious material, meaning it can replace a portion of the cement used in concrete. LCA results showed that replacing 15% of cement with RHA in concrete can reduce carbon dioxide equivalent (CO2e) emissions by 15% while still meeting material performance targets. While the substitution rate of RHA for cement may be modest, RHA generated from California alone could mitigate 0.2% of total CO2e from the entire cement production sector in the United States and 1% in California.

Funder

CDFA | California Rice Research Board

Publisher

Springer Science and Business Media LLC

Reference48 articles.

1. Turner, L. K. & Collins, F. G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125–130 (2013).

2. Teh, S. H., Wiedmann, T., Castel, A. & de Burgh, J. Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. J. Clean. Prod. 152, 312–320 (2017).

3. US Environmental Protection Agency. Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2020 (United States Environmental Protection Agency, 2022).

4. United States Green Building Council. LEED. https://new.usgbc.org/leed (2021).

5. Institute for Sustainable Infrastructure. ENVISION (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3