Photonic reservoir computing based on nonlinear wave dynamics at microscale

Author:

Sunada Satoshi,Uchida Atsushi

Abstract

AbstractHigh-dimensional nonlinear dynamical systems, including neural networks, can be utilized as computational resources for information processing. In this sense, nonlinear wave systems are good candidates for such computational resources. Here, we propose and numerically demonstrate information processing based on nonlinear wave dynamics in microcavity lasers, i.e., optical spatiotemporal systems at microscale. A remarkable feature is its ability of high-dimensional and nonlinear mapping of input information to the wave states, enabling efficient and fast information processing at microscale. We show that the computational capability for nonlinear/memory tasks is maximized at the edge of dynamical stability. Moreover, we show that computational capability can be enhanced by applying a time-division multiplexing technique to the wave dynamics. Thus, the computational potential of the wave dynamics can sufficiently be extracted even when the number of detectors to monitor the wave states is limited. In addition, we discuss the merging of optical information processing with optical sensing, revealing a novel method for model-free sensing by using a microcavity reservoir as a sensing element. These results pave a way for on-chip photonic computing with high-dimensional dynamics and a model-free sensing method.

Funder

JST PRESTO

Japan Society for the Promotion of Science

Okawa Foundation for Information and Telecommunications

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3