A within-lake occupancy model for starry stonewort, Nitellopsis obtusa, to support early detection and monitoring

Author:

Bajcz Alex W.ORCID,Glisson Wesley J.ORCID,Doser Jeffrey W.ORCID,Larkin Daniel J.ORCID,Fieberg John R.ORCID

Abstract

AbstractTo efficiently detect aquatic invasive species early in an invasion when control may still be possible, predictions about which locations are likeliest to be occupied are needed at fine scales but are rarely available. Occupancy modeling could provide such predictions given data of sufficient quality and quantity. We assembled a data set for the macroalga starry stonewort (Nitellopsis obtusa) across Minnesota and Wisconsin, USA, where it is a new and high-priority invader. We used these data to construct a multi-season, single-species spatial occupancy model that included biotic, abiotic, and movement-related predictors. Distance to the nearest access was an important occurrence predictor, highlighting the likely role boats play in spreading starry stonewort. Fetch and water depth also predicted occupancy. We estimated an average detection probability of 63% at sites with mean non-N. obtusa plant cover, declining to ~ 38% at sites with abundant plant cover, especially that of other Characeae. We recommend that surveyors preferentially search for starry stonewort in areas of shallow depth and high fetch close to boat accesses. We also recommend searching during late summer/early fall when detection is likelier. This study illustrates the utility of fine-scale occupancy modeling for predicting the locations of nascent populations of difficult-to-detect species.

Funder

State of Minnesota

Minnesota Aquatic Invasive Species Research Center

Minnesota Agricultural Experiment Station

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3