Automatic vertebrae localization and segmentation in CT with a two-stage Dense-U-Net

Author:

Cheng Pengfei,Yang Yusheng,Yu Huiqiang,He Yongyi

Abstract

AbstractAutomatic vertebrae localization and segmentation in computed tomography (CT) are fundamental for spinal image analysis and spine surgery with computer-assisted surgery systems. But they remain challenging due to high variation in spinal anatomy among patients. In this paper, we proposed a deep-learning approach for automatic CT vertebrae localization and segmentation with a two-stage Dense-U-Net. The first stage used a 2D-Dense-U-Net to localize vertebrae by detecting the vertebrae centroids with dense labels and 2D slices. The second stage segmented the specific vertebra within a region-of-interest identified based on the centroid using 3D-Dense-U-Net. Finally, each segmented vertebra was merged into a complete spine and resampled to original resolution. We evaluated our method on the dataset from the CSI 2014 Workshop with 6 metrics: location error (1.69 ± 0.78 mm), detection rate (100%) for vertebrae localization; the dice coefficient (0.953 ± 0.014), intersection over union (0.911 ± 0.025), Hausdorff distance (4.013 ± 2.128 mm), pixel accuracy (0.998 ± 0.001) for vertebrae segmentation. The experimental results demonstrated the efficiency of the proposed method. Furthermore, evaluation on the dataset from the xVertSeg challenge with location error (4.12 ± 2.31), detection rate (100%), dice coefficient (0.877 ± 0.035) shows the generalizability of our method. In summary, our solution localized the vertebrae successfully by detecting the centroids of vertebrae and implemented instance segmentation of vertebrae in the whole spine.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3