Quantifying local and global mass balance errors in physics-informed neural networks

Author:

Mamud M. L.,Mudunuru M. K.,Karra S.,Ahmmed B.

Abstract

AbstractPhysics-informed neural networks (PINN) have recently become attractive for solving partial differential equations (PDEs) that describe physics laws. By including PDE-based loss functions, physics laws such as mass balance are enforced softly in PINN. This paper investigates how mass balance constraints are satisfied when PINN is used to solve the resulting PDEs. We investigate PINN’s ability to solve the 1D saturated groundwater flow equations (diffusion equations) for homogeneous and heterogeneous media and evaluate the local and global mass balance errors. We compare the obtained PINN’s solution and associated mass balance errors against a two-point finite volume numerical method and the corresponding analytical solution. We also evaluate the accuracy of PINN in solving the 1D saturated groundwater flow equation with and without incorporating hydraulic heads as training data. We demonstrate that PINN’s local and global mass balance errors are significant compared to the finite volume approach. Tuning the PINN’s hyperparameters, such as the number of collocation points, training data, hidden layers, nodes, epochs, and learning rate, did not improve the solution accuracy or the mass balance errors compared to the finite volume solution. Mass balance errors could considerably challenge the utility of PINN in applications where ensuring compliance with physical and mathematical properties is crucial.

Funder

Center for Nonlinear Sciences, Los Alamos National Laboratory

DOE SciDAC4

DOE Office of Biological and Environmental Research program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3