Potential design problems for ITER fusion device

Author:

Hassanein A.,Sizyuk V.

Abstract

AbstractThe international thermonuclear experimental reactor (ITER) is a worldwide project currently being built in France for the demonstration of the feasibility of thermonuclear technologies for future realization of successful commercial fusion energy. ITER is of the tokamak based design using strong magnetic fields to confine the very hot plasma needed to induce the fusion reaction. Tokamak devices are currently the front leading designs. Building a successful magnetic fusion device for energy production is of great challenge. A key obstacle to such design is the performance during abnormal events including plasma disruptions and so-called edge-localized modes (ELMs). In these events, a massive and sudden release of energy occurs quickly, due to loss of full or partial plasma confinement, leading to very high transient power loads on the reactor surface boundaries. A successful reactor design should tolerate several of these transient events without serious damages such as melting and vaporization of the structure. This paper highlights, through comprehensive state-of-the-art computer simulation of the entire ITER interior design during such transient events, e.g., ELMs occurring at normal operation and disruptions during abnormal operation, potential serious problems with current plasma facing components (PFCs) design. The HEIGHTS computer package is used in these simulations. The ITER reactor design was simulated in full and exact 3D geometry including all known relevant physical processes involved during these transient events. The current ITER divertor design may not work properly and may requires significant modifications or new innovative design to prevent serious damage and to ensure successful operation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3