Biological 2,4,6-trinitrotoluene removal by extended aeration activated sludge: optimization using artificial neural network

Author:

Karimi Hossein,Mohammadi Farzaneh,Rajabi Saeed,Mahvi Amir Hossein,Ghanizadeh Ghader

Abstract

AbstractSerious health issues can result from exposure to the nitrogenous pollutant like 2,4,6-trinitrotoluene (TNT), which is emitted into the environment by the munitions and military industries, as well as from TNT-contaminated wastewater. The TNT removal by extended aeration activated sludge (EAAS) was optimized in the current study using artificial neural network modeling. In order to achieve the best removal efficiency, 500 mg/L of chemical oxygen demand (COD), 4 and 6 h of hydraulic retention time (HRT), and 1–30 mg/L of TNT were used in this study. The kinetics of TNT removal by the EAAS system were described by the calculation of the kinetic coefficients K, Ks, Kd, max, MLSS, MLVSS, F/M, and SVI. Adaptive neuro fuzzy inference system (ANFIS) and genetic algorithms (GA) were used to optimize the data obtained through TNT elimination. ANFIS approach was used to analyze and interpret the given data, and its accuracy was around 97.93%. The most effective removal efficiency was determined using the GA method. Under ideal circumstances (10 mg/L TNT concentration and 6 h), the TNT removal effectiveness of the EAAS system was 84.25%. Our findings demonstrated that the artificial neural network system (ANFIS)-based EAAS optimization could enhance the effectiveness of TNT removal. Additionally, it can be claimed that the enhanced EAAS system has the ability to extract wastewaters with larger concentrations of TNT as compared to earlier experiments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3