Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source

Author:

Gholami Hamid,Mohammadifar Aliakbar

Abstract

AbstractDust storms have many negative consequences, and affect all kinds of ecosystems, as well as climate and weather conditions. Therefore, classification of dust storm sources into different susceptibility categories can help us mitigate its negative effects. This study aimed to classify the susceptibility of dust sources in the Middle East (ME) by developing two novel deep learning (DL) hybrid models based on the convolutional neural network–gated recurrent unit (CNN-GRU) model, and the dense layer deep learning–random forest (DLDL-RF) model. The Dragonfly algorithm (DA) was used to identify the critical features controlling dust sources. Game theory was used for the interpretability of the DL model’s output. Predictive DL models were constructed by dividing datasets randomly into train (70%) and test (30%) groups, six statistical indicators being then applied to assess the DL hybrid model performance for both datasets (train and test). Among 13 potential features (or variables) controlling dust sources, seven variables were selected as important and six as non-important by DA, respectively. Based on the DLDL-RF hybrid model – a model with higher accuracy in comparison with CNN-GRU–23.1, 22.8, and 22.2% of the study area were classified as being of very low, low and moderate susceptibility, whereas 20.2 and 11.7% of the area were classified as representing high and very high susceptibility classes, respectively. Among seven important features selected by DA, clay content, silt content, and precipitation were identified as the three most important by game theory through permutation values. Overall, DL hybrid models were found to be efficient methods for prediction purposes on large spatial scales with no or incomplete datasets from ground-based measurements.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3