Full three-dimensional Poynting vector flow analysis of great field-intensity enhancement in specifically sized spherical-particles

Author:

Yue Liyang,Yan Bing,Monks James N.,Dhama Rakesh,Jiang Chunlei,Minin Oleg V.,Minin Igor V.ORCID,Wang Zengbo

Abstract

AbstractThe Poynting vector plays a key role in electrodynamics as it is directly related to the power and the momentum carried by an electromagnetic wave. Based on the Lorenz-Mie theory, we report on the focusing effect of a spherical particle-lens by properly analysing the Poynting vector maps. Conventional two-dimensional (2D) maps showing Poynting vector magnitude and direction in a given plane cannot deliver information on three-dimensional (3D) directivity and vectorisation in key regions of singularities, such as vortexes and saddle points, due to poor expressiveness. In this article, an analytical 3D mapping technology is utilised to track the field-features passing through the singularities of the distribution of the Poynting vector in a spherically dielectric mesoscale particle-lens. We discovered that the spheres with the certain size parameters can stimulate extremely large field-intensity at singularities and then form two circular hotspots around the sphere poles. An astonishing large ‘heart-shape’ 3D Poynting vector circulation, which cannot be predicted by conventional 2D mapping analysis, is found to provide a great angular variation within an enormous range in these spheres. We anticipate that this effect will contribute to the field-enhancement phenomena, such as surface enhances Raman scattering, surface enhances absorption, super-resolution imaging and others.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference35 articles.

1. Stratton, J. A. Electromagnetic Theory. 1st ed., McGraw-Hill, New York (1941).

2. Poynting, J. H. On the transfer of energy in the electromagnetic field. Philos. Trans. Royal Soc. A 175, 343–361 (1884).

3. Griffiths, D. J. Introduction to Electrodynamics. 3rd ed., Addison-Wesley, Boston (2012).

4. Bohren, C. F. & Huffman, D. R. Absorption and scattering of light by small particles., Wiley, New York (1983).

5. Wang, Z. B., Luk’yanchuk, B. S., Hong, M. H., Lin, Y. & Chong, T. C. Energy flow around a small particle investigated by classical Mie theory. Phys. Rev. B. 70, 035418 (2004).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3