Humidity sensor based on Gallium Nitride for real time monitoring applications

Author:

Furqan Chaudhry Muhammad,Khan Muhammad Umair,Awais Muhammad,Jiang Fulong,Bae Jinho,Hassan Arshad,Kwok Hoi-Sing

Abstract

AbstractGallium Nitride (GaN) remarkably shows high electron mobility, wide energy band gap, biocompatibility, and chemical stability. Wurtzite structure makes topmost Gallium atoms electropositive, hence high ligand binding ability especially to anions, making it usable as humidity sensor due to water self-ionization phenomenon. In this work, thin-film GaN based humidity sensor is fabricated through pulse modulated DC magnetron sputtering. Interdigitated electrodes (IDEs) with 100 μm width and spacing were inkjet printed on top of GaN sensing layer to further enhance sensor sensitivity. Impedance, capacitance, and current response were recorded for humidity and bio-sensing applications. The sensor shows approximate linear impedance response between 0 and 100% humidity range, the sensitivity of 8.53 nF/RH% and 79 kΩ/RH% for capacitance and impedance, and fast response (Tres) and recovery (Trec) time of 3.5 s and 9 s, respectively. The sensor shows little hysteresis of < 3.53% with stable and wide variations for accurate measurements. Especially, it demonstrates temperature invariance for thermal stability. Experimental results demonstrate fabricated sensor effectively evaluates plant transpiration cycle through water level monitoring by direct attachment onto leaves without causing any damage as well as freshness level of meat loaf. These properties of the proposed sensor make it a suitable candidate for future electronics providing a low-cost platform for real time monitoring applications.

Funder

State Key Laboratory on Advanced Displays and Optoelectronics Technologies from The Hong Kong University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3