Author:
Brandenburg Kenneth S.,Weaver Alan J.,Karna S. L. Rajasekhar,You Tao,Chen Ping,Stryk Shaina Van,Qian Liwu,Pineda Uzziel,Abercrombie Johnathan J.,Leung Kai P.
Abstract
Abstract
Using Sprague-Dawley rats (350–450 g; n = 61) and the recently updated Walker-Mason rat scald burn model, we demonstrated that Pseudomonas aeruginosa readily formed biofilms within full-thickness burn wounds. Following the burn, wounds were surface-inoculated with P. aeruginosa in phosphate-buffered saline (PBS), while sterile PBS was used for controls. On post-burn days 1, 3, 7, and 11, animals were euthanized and samples collected for quantitative bacteriology, bacterial gene expression, complete blood cell counts, histology, and myeloperoxidase activity. Robust biofilm infections developed in the full-thickness burn wounds inoculated with 1 × 104 CFU of P. aeruginosa. Both histology and scanning electron microscopy showed the pathogen throughout the histologic cross-sections of burned skin. Quantigene analysis revealed significant upregulation of alginate and pellicle biofilm matrix genes of P. aeruginosa within the burn eschar. Additionally, expression of P. aeruginosa proteases and siderophores increased significantly in the burn wound environment. Interestingly, the host’s neutrophil response to the pathogen was not elevated in either the eschar or circulating blood when compared to the control burn. This new full-thickness burn biofilm infection model will be used to test new anti-biofilm therapies that may be deployed with soldiers in combat for immediate use at the site of burn injury on the battlefield.
Publisher
Springer Science and Business Media LLC
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献