Graphene-based optofluidic tweezers for refractive-index and size-based nanoparticle sorting, manipulation, and detection

Author:

Gholizadeh ElnazORCID,Jafari BehnamORCID,Golmohammadi Saeed

Abstract

AbstractThis work proposes a novel design composed of graphene nanoribbons-based optofluidic tweezers to manipulate and sort bio-particles with radii below 2.5 nm. The suggested structure has been numerically investigated by the finite difference time domain (FDTD) method employing Maxwell's stress tensor analysis (MST). The finite element method (FEM) has been used to obtain the electrostatic response of the proposed structure. The tweezer main path is a primary channel in the center of the structure, where the microfluidic flow translates the nanoparticle toward this channel. Concerning the microfluid's drag force, the nanoparticles tend to move along the length of the main channel. The graphene nanoribbons are fixed near the main channel at different distances to exert optical forces on the moving nanoparticles in the perpendicular direction. In this regard, sub-channels embedding in the hBN layer on the Si substrate deviate bio-particles from the main path for particular nanoparticle sizes and indices. Intense hotspots with electric field enhancements up to 900 times larger than the incident light are realized inside and around the graphene ribbons. Adjusting the gap distance between the graphene nanoribbon and the main channel allows us to separate the individual particle with a specific size from others, thus guiding that in the desired sub-channel. Furthermore, we demonstrated that in a structure with a large gap between channels, particles experience weak field intensity, leading to a low optical force that is insufficient to detect, trap, and manipulate nanoparticles. By varying the chemical potential of graphene associated with the electric field intensity variations in the graphene ribbons, we realized tunability in sorting nanoparticles while structural parameters remained constant. In fact, by adjusting the graphene Fermi level via the applied gate voltage, nanoparticles with any desired radius will be quickly sorted. Moreover, we exhibited that the proposed structure could sort nanoparticles based on their refractive indices. Therefore, the given optofluidic tweezer can easily detect bio-particles, such as cancer cells and viruses of tiny size.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3