Author:
Jayeoye Titilope John,Eze Fredrick Nwude,Olatunji Opeyemi Joshua,Tyopine Andrew Aondoaver
Abstract
AbstractHerein, the synthesis of a biocompatible silver nanoparticles (AgNPs), for colorimetric detection of toxic mercury (II) ion (Hg2+), is reported. Phenolic-rich fraction of Asystasia gangetica leaf was extracted and used as a reductant of silver salt, all within the hydrophilic konjac glucomannan (KgM) solution as stabilizer, at room temperature (RT). The bioactive components of Asystasia gangetica phenolic extract (AGPE), as elucidated with a (UHPLC-MS-QTOF-MS), revealed plethora of phenolic compounds, which can facilitate the reduction of silver salt at ambient conditions. Sparkling yellow colloidal solution of KgM-AgNPs was realized within 1 h, at RT, having a UV–vis maximum at 420 nm. KgM-AgNPs was characterized using UV–vis, Raman and (FTIR), TEM, SEM, EDS, XRD, TGA/DTG. TEM and FESEM images showed that KgM-AgNPs were spherical, with particle size distribution around 10–15 nm from TEM. The KgM-AgNPs biocompatibility was investigated on mouse L929 fibrobroblast and rat erythrocytes, without any harmful damages on the tested cells. In aqueous environment, KgM-AgNPs demonstrated good detection capacity toward Hg2+, in a Hg2+ concentration dependent fashion, within 3 min. Absorbance ratios (A360/A408) was linear with Hg2+ concentrations from 0.010–10.0 to 10.0–60.0 µM, with an estimated (LOD) of 3.25 nM. The probe was applied in lake water sample, with satisfactory accuracy.
Publisher
Springer Science and Business Media LLC
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献