Author:
Azizul Fatin M.,Alsabery Ammar I.,Hashim Ishak,Roslan Rozaini,Saleh Habibis
Abstract
AbstractTwo dimensional wavy walls rectangular cavity with inclined magnetohydrodynamic has been examined in mixed convection configurations. Triple fins arranged in the upwards ladder were filled within alumina nanoliquid in the cavity. Vertical sinusoidal walls were heated, and the other side was kept cold while both horizontal walls were kept adiabatic. All walls were motionless except the top cavity that was driven to the right. The diversified range of control parameter in Richardson number, Hartmann number, number of undulations, length of the cavity has been performed in this study. The analysis was simulated using finite element method by employing the governing equation formula, and the results were delineated in the form of streamlines, isotherms, heatlines, and comparisons on several relationships between the local velocity in the y-axis line of 0.6, local and average Nusselt number along the heated surface and dimensionless average temperature. The findings revealed that high concentration nanofluids boost the rate of heat transfer without the need to apply any magnetic field. Results found that the best heat mechanisms are natural convection with significant-high Richardson number as well as constructing two waves on the vertical walls in the cavity.
Funder
Universiti Kebangsaan Malaysia
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献