High Impact Exercise Improves Bone Microstructure and Strength in Growing Rats

Author:

Mustafy TanvirORCID,Londono Irène,Moldovan Florina,Villemure Isabelle

Abstract

Abstract Physical activity is beneficial for skeletal development. However, impact sports during adolescence, leading to bone growth retardation and/or bone quality improvement, remains unexplained. This study investigated the effects of in vivo low (LI), medium (MI), and high (HI) impact loadings applied during puberty on bone growth, morphometry and biomechanics using a rat model. 4-week old rats (n = 30) were divided into control, sham, LI, MI, and HI groups. The impact was applied on the right tibiae, 5 days/week for 8 weeks mimicking walking (450 µε), uphill running (850 µε) and jumping (1250 µε) conditions. Trabecular and cortical parameters were determined by micro-CT, bone growth rate by calcein labeling and toluidine blue staining followed by histomorphometry. Bio-mechanical properties were evaluated from bending tests. HI group reduced rat body weight and food consumption compared to shams. Bone growth rate also decreased in MI and HI groups despite developing thicker hypertrophic and proliferative zone heights. HI group showed significant increment in bone mineral density, trabecular thickness, cortical and total surface area. Ultimate load and stiffness were also increased in MI and HI groups. We conclude that impact loading during adolescence reduces bone growth moderately but improves bone quality and biomechanics at the end of the growing period.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference104 articles.

1. Karlsson, M. K. Physical activity, skeletal health and fractures in a long term perspective. Journal of Musculoskeletal and Neuronal Interactions 4, 12 (2004).

2. Warden, S. J., Fuchs, R., Castillo, A. & Turner, C. Does exercise during growth influence osteoporotic fracture risk later in life? Journal of Musculoskeletal and Neuronal Interactions 5, 344 (2005).

3. Wolff, J. Das gesetz der transformation der knochen. A Hirshwald 1, 1–152 (1892).

4. Duncan, R. & Turner, C. Mechanotransduction and the functional response of bone to mechanical strain. Calcified tissue international 57, 344–358 (1995).

5. Ahn, A. C. & Grodzinsky, A. J. Relevance of collagen piezoelectricity to “Wolff’s Law”: A critical review. Medical engineering & physics 31, 733–741 (2009).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3