Novel application of neural network modelling for multicomponent herbal medicine optimization

Author:

Ren Yong-ShenORCID,Lei Lei,Deng Xin,Zheng Yao,Li Yan,Li Jun,Mei Zhi-Nan

Abstract

Abstract The conventional method for effective or toxic chemical substance identification of multicomponent herbal medicine is based on single component separation, which is time-consuming, labor intensive, inefficient, and neglects the interaction and integrity among the components; therefore, it is necessary to find an alternative routine to evaluate the components more efficiently and scientifically. In this study, sodium aescinate injection (SAI), obtained from different manufacturers and prepared as “components knockout” samples, was chosen as the case study. The chemical fingerprints of SAI were obtained by high-performance liquid chromatography to provide the chemical information. The effectiveness and irritation of each sample were evaluated using anti-inflammatory and irritation tests, and then “Gray correlation” analysis (GCA) was applied to rank the effectiveness and irritability of each component to provide a preliminary judgment for product optimization. The prediction model of the proportions of the expected components was constructed using the artificial neural network. The results of the GCA showed that the irritation sorting of each SAI component was in the order of B > A > G > J > I > H > D > F > E > C and the effectiveness sorting of SAI components was in the order of D > C > B > A > F > E > H > I > G > J; the predictive proportion of SAI was optimized by the BP neural network as A: B: C: D: E: F = 0.7526: 0.5005: 5.4565: 1.4149: 0.8113: 1.0642. This study provided a scientific, accurate, reliable, and efficient approach for the proportion optimization of multicomponent drugs, which has a good prospect of popularization and application in product upgrading and development of herbal medicine.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3