Underwater image quality assessment method based on color space multi-feature fusion

Author:

Chen Tianhai,Yang Xichen,Li Nengxin,Wang Tianshu,Ji Genlin

Abstract

AbstractThe complexity and challenging underwater environment leading to degradation in underwater image. Measuring the quality of underwater image is a significant step for the subsequent image processing step. Existing Image Quality Assessment (IQA) methods do not fully consider the characteristics of degradation in underwater images, which limits their performance in underwater image assessment. To address this problem, an Underwater IQA (UIQA) method based on color space multi-feature fusion is proposed to focus on underwater image. The proposed method converts underwater images from RGB color space to CIELab color space, which has a higher correlation to human subjective perception of underwater visual quality. The proposed method extract histogram features, morphological features, and moment statistics from luminance and color components and concatenate the features to obtain fusion features to better quantify the degradation in underwater image quality. After features extraction, support vector regression(SVR) is employed to learn the relationship between fusion features and image quality scores, and gain the quality prediction model. Experimental results on the SAUD dataset and UIED dataset show that our proposed method can perform well in underwater image quality assessment. The performance comparisons on LIVE dataset, TID2013 dataset,LIVEMD dataset,LIVEC dataset and SIQAD dataset demonstrate the applicability of the proposed method.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Youth Science Foundation of Jiangsu Province

Future Network Scientific Research Fund Project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3