Meta-analysis of epigenome-wide association studies of major depressive disorder

Author:

Li Qingqin S.,Morrison Randall L.,Turecki Gustavo,Drevets Wayne C.

Abstract

AbstractEpigenetic mechanisms have been hypothesized to play a role in the etiology of major depressive disorder (MDD). In this study, we performed a meta-analysis between two case–control MDD cohorts to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in MDD. Using samples from two Cohorts (a total of 298 MDD cases and 63 controls with repeated samples, on average ~ 1.8 samples/subject), we performed an EWAS meta-analysis. Multiple cytosine-phosphate-guanine sites annotated to TNNT3 were associated with MDD reaching study-wide significance, including cg08337959 (p = 2.3 × 10–11). Among DMPs with association p values less than 0.0001, pathways from REACTOME such as Ras activation upon Ca2+ influx through the NMDA receptor (p = 0.0001, p-adjusted = 0.05) and long-term potentiation (p = 0.0002, p-adjusted = 0.05) were enriched in this study. A total of 127 DMRs with Sidak-corrected p value < 0.05 were identified from the meta-analysis, including DMRs annotated to TNNT3 (chr11: 1948933 to 1949130 [6 probes], Sidak corrected P value = 4.32 × 10–41), S100A13 (chr1: 153599479 to 153600972 [22 probes], Sidak corrected P value = 5.32 × 10–18), NRXN1 (chr2: 50201413 to 50201505 [4 probes], Sidak corrected P value = 1.19 × 10–11), IL17RA (chr22: 17564750 to 17565149, Sidak corrected P value = 9.31 × 10–8), and NPFFR2 (chr4: 72897565 to 72898212, Sidak corrected P value = 8.19 × 10–7). Using 2 Cohorts of depression case–control samples, we identified DMPs and DMRs associated with MDD. The molecular pathways implicated by these data include mechanisms involved in neuronal synaptic plasticity, calcium signaling, and inflammation, consistent with reports from previous genetic and protein biomarker studies indicating that these mechanisms are involved in the neurobiology of depression.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3