Efficient detection of aortic stenosis using morphological characteristics of cardiomechanical signals and heart rate variability parameters

Author:

Shokouhmand Arash,Aranoff Nicole D.,Driggin Elissa,Green Philip,Tavassolian Negar

Abstract

AbstractRecent research has shown promising results for the detection of aortic stenosis (AS) using cardio-mechanical signals. However, they are limited by two main factors: lacking physical explanations for decision-making on the existence of AS, and the need for auxiliary signals. The main goal of this paper is to address these shortcomings through a wearable inertial measurement unit (IMU), where the physical causes of AS are determined from IMU readings. To this end, we develop a framework based on seismo-cardiogram (SCG) and gyro-cardiogram (GCG) morphologies, where highly-optimized algorithms are designed to extract features deemed potentially relevant to AS. Extracted features are then analyzed through machine learning techniques for AS diagnosis. It is demonstrated that AS could be detected with 95.49–100.00% confidence. Based on the ablation study on the feature space, the GCG time-domain feature space holds higher consistency, i.e., 95.19–100.00%, with the presence of AS than HRV parameters with a low contribution of 66.00–80.00%. Furthermore, the robustness of the proposed method is evaluated by conducting analyses on the classification of the AS severity level. These analyses are resulted in a high confidence of 92.29%, demonstrating the reliability of the proposed framework. Additionally, game theory-based approaches are employed to rank the top features, among which GCG time-domain features are found to be highly consistent with both the occurrence and severity level of AS. The proposed framework contributes to reliable, low-cost wearable cardiac monitoring due to accurate performance and usage of solitary inertial sensors.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference57 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Frequency Based Detection of Mitral Regurgitation Using Seismocardiogram Signal;2023 21st International Conference on ICT and Knowledge Engineering (ICT&KE);2023-11-22

2. Strain Plethysmography at the Radial Artery: A Promising Technique for Cuffless Blood Pressure Estimation;2023 IEEE Biomedical Circuits and Systems Conference (BioCAS);2023-10-19

3. A Comparative Study of Heart Rate Variability Parameters Estimated from Strain Plethysmography Recordings of Radial and Finger Arteries;2023 IEEE 19th International Conference on Body Sensor Networks (BSN);2023-10-09

4. Diagnosis of Coexisting Valvular Heart Diseases Using Image-to-Sequence Translation of Contact Microphone Recordings;IEEE Transactions on Biomedical Engineering;2023-09

5. Fingertip Strain Plethysmography: Representation of Pulse Information based on Vascular Vibration;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3