Optimal view detection for ultrasound-guided supraclavicular block using deep learning approaches

Author:

Jo Yumin,Lee Dongheon,Baek Donghyeon,Choi Bo Kyung,Aryal Nisan,Jung Jinsik,Shin Yong Sup,Hong Boohwi

Abstract

AbstractSuccessful ultrasound-guided supraclavicular block (SCB) requires the understanding of sonoanatomy and identification of the optimal view. Segmentation using a convolutional neural network (CNN) is limited in clearly determining the optimal view. The present study describes the development of a computer-aided diagnosis (CADx) system using a CNN that can determine the optimal view for complete SCB in real time. The aim of this study was the development of computer-aided diagnosis system that aid non-expert to determine the optimal view for complete supraclavicular block in real time. Ultrasound videos were retrospectively collected from 881 patients to develop the CADx system (600 to the training and validation set and 281 to the test set). The CADx system included classification and segmentation approaches, with Residual neural network (ResNet) and U-Net, respectively, applied as backbone networks. In the classification approach, an ablation study was performed to determine the optimal architecture and improve the performance of the model. In the segmentation approach, a cascade structure, in which U-Net is connected to ResNet, was implemented. The performance of the two approaches was evaluated based on a confusion matrix. Using the classification approach, ResNet34 and gated recurrent units with augmentation showed the highest performance, with average accuracy 0.901, precision 0.613, recall 0.757, f1-score 0.677 and AUROC 0.936. Using the segmentation approach, U-Net combined with ResNet34 and augmentation showed poorer performance than the classification approach. The CADx system described in this study showed high performance in determining the optimal view for SCB. This system could be expanded to include many anatomical regions and may have potential to aid clinicians in real-time settings.Trial registration The protocol was registered with the Clinical Trial Registry of Korea (KCT0005822, https://cris.nih.go.kr).

Funder

Chunam National University Hospital Research Fund, 2020

“HPC Support” Project, supported by the 'Ministry of Science and ICT' and ‘National IT Industry Promotion Agency (NIPA)’

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3