Deconvolution of ferromagnetic resonance spectrum of magnetic nanoparticle assembly using genetic algorithm

Author:

Usov N. A.,Serebryakova O. N.

Abstract

AbstractThe ferromagnetic resonance (FMR) spectra of dilute random assemblies of magnetite nanoparticles with cubic magnetic anisotropy and various aspect ratios are calculated using the stochastic Landau–Lifshitz equation at a finite temperature, T = 300 K, taking into account the thermal fluctuations of the particle magnetic moments. Particles of non-spherical shape in the first approximation are described as elongated spheroids with a given semiaxes ratio a/b, where a and b are the long and transverse semiaxes of a spheroid, respectively. A representative database of FMR spectra is created for assemblies of randomly oriented spheroidal magnetite nanoparticles with various transverse diameters D = 5–25 nm, moderate aspect ratios a/b = 1.0–1.8, and magnetic damping constants κ = 0.1, 0.2. The basic FMR spectra of assemblies with D = 25 nm at different aspect ratios can be considered as representatives of assemblies of single-domain magnetite nanoparticles with transverse diameters D > 25 nm. The database is calculated at exciting frequency f = 4.9 GHz (S-band) to clarify the details of the FMR spectrum that depend on the particle magnetic anisotropy nature. The data obtained make it possible to analyze arbitrary combined FMR spectra constructed as weighted linear combinations of FMR spectra of the base assemblies. In addition, using a genetic algorithm, the corresponding inverse problem is solved. The latter consists in determining the volume fractions of the base assemblies in some arbitrary nanoparticle assembly, which is represented by its FMR spectrum.

Funder

Ministry of Science and Higher Education of the Russian Federation, Russia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3